
4

PREPARING CHOLLA FOR
FRONTIER

CRUSHER USER-EXPERIENCE TALKS

December 9th 2022

CRUSHER USER-EXPERIENCE TALKS

SCIENTIFIC MOTIVATION:
GALAXY EVOLUTION AT PARSEC* SCALE

Image credit: X-ray: NASA/CXC/U.Mich./S.Oey, IR: NASA/JPL, Optical: ESO/WFI/2.2-m*1 Parsec = a few light years

Star Cluster NGC 1929

CRUSHER USER-EXPERIENCE TALKS

SCIENTIFIC MOTIVATION:

▸ Goal is to simulate a Milky Way-like galaxy at a resolution
that allows for self-consistent star formation and supernova
explosions within a multiphase interstellar medium

▸ Milky Way diameter: ~30 kpc

▸ Resolution required to resolve star
clusters: ~few pc

▸ Target resolution for “grand challenge”
problem on Frontier ~10,0003 cells

Image credit:ESA/Hubble & NASA

Spiral Galaxy UGC 12158

CRUSHER USER-EXPERIENCE TALKS

CHOLLA: COMPUTATIONAL HYDRODYNAMICS ON II ARCHITECTURES

▸ Cholla is a GPU-native, massively-parallel, finite-volume
hydrodynamics code developed for astrophysics
simulations

▸ Cholla is open source — code is publicly available at
https://github.com/cholla-hydro/cholla

▸ All of the code development work I will discuss today is in
the main branch of the public cholla repository

https://github.com/cholla-hydro/cholla

CRUSHER USER-EXPERIENCE TALKS

CHOLLA: COMPUTATIONAL HYDRODYNAMICS ON II ARCHITECTURES

▸ Cholla is a GPU-native, massively-parallel, finite-volume
hydrodynamics code developed for astrophysics
simulations

x
y

Fi+ 1
2 ,j,k

Gi,j+ 1
2 ,k

Hi,j,k+ 1
2

z

Sim
ula

tio
n D

om
ain

where F, G, and H are vectors of fluxes in the x-, y-, and
z-directions, respectively, with components

F ¼

!vx

!v2x þ P þ B2=2# B2
x

!vxvy # BxBy

!vxvz # BxBz

E þ P$ð Þvx # B = vð ÞBx

0

Byvx # Bxvy

Bzvx # Bxvz

2

66666666666664

3

77777777777775

; ð8Þ

G ¼

!vy

!vyvx # ByBx

!v2y þ P þ B2=2# B2
y

!vyvz # ByBz

E þ P$ð Þvy # B = vð ÞBy

Bxvy # Byvx

0

Bzvy # Byvz

2

66666666666664

3

77777777777775

; ð9Þ

H ¼

!vz

!vzvx # BzBx

!vzvy # BzBy

!v 2z þ P þ B2=2# B2
z

E þ P$ð Þvz # B = vð ÞBz

Bxvz # Bzvx

Byvz # Bzvy

0

2

66666666666664

3

77777777777775

: ð10Þ

Extension to curvilinear coordinates requires addingmetric scale
factors to the definitions of the fluxes, or using a nonconserva-
tive formulation that treats grid curvature as source terms, or a
combination of these approaches.

For hydrodynamics, or for a barotropic equation of state (or
for both), the appropriate components of the vectors U, W, and
their fluxes are dropped.While the last three components of these
vectors represents the induction equation inCartesian coordinates,
the numerical algorithm actually used to evolve the magnetic field
is very different in comparison to that used for the other compo-
nents, as described in x 3.

3. DISCRETIZATION

Athena integrates the equations of motion on a regular, 3D
Cartesian grid. The continuous spatial coordinates (x; y; z) are
discretized into (Nx;Ny;Nz) cells within a finite domain of size
(Lx; Ly; Lz) in each direction, respectively. The cell denoted by
indices (i; j; k) is centered at position (xi; yj; zk). For simplicity,
we describe the algorithmwith the assumption that the sizes of the
grid cells in each direction, "x ¼ Lx/Nx, "y ¼ Ly/Ny, and "z ¼
Lz/Nz, respectively, are uniform throughout the domain; the nu-
merical methods are easily extended to nonuniform grids.

Time is discretized into N nonuniform steps between the
initial value t0 and the final stopping time tf . Following the usual
convention, we use a superscript to denote the time level, so

t nþ1 # t n ¼ "t n. Hereafter, we drop the superscript on "t with
the understanding that the time step may vary.

3.1. Mass, Momentum, and Energy: Finite Volumes

Discretizations based on the integral, rather than the differen-
tial, formof equations (1)Y(4) have numerous advantages for flows
that contain shocks and discontinuities (LeVeque 2002). Inte-
gration of equation (7) over the volume of a grid cell, and over a
discrete interval of time "t gives, after application of the diver-
gence theorem,

U nþ1
i; j;k ¼ U n

i; j;k#
"t

"x
Fnþ1=2
iþ1=2; j;k # Fnþ1=2

i#1=2; j;k

! "

"t

"y
Gnþ1=2

i; jþ1=2;k # Gnþ1=2
i; j#1=2;k

! "

"t

"z
Hnþ1=2

i; j;kþ1=2 #Hnþ1=2
i; j;k#1=2

! "
ð11Þ

where

U n
i; j;k ¼

1

"x"y"z

;
Z zkþ1=2

zk#1=2

Z yjþ1=2

yj#1=2

Z xiþ1=2

xi#1=2

U x; y; z; t nð Þdx dy dz; ð12Þ

is a vector of volume-averaged variables, while

Fnþ1=2
i#1=2; j;k ¼

1

"y"z"t

;
Z t nþ1

t n

Z zkþ1=2

zk#1=2

Z yjþ1=2

yj#1=2

F xi#1=2; y; z; t
$

dy dz dt; ð13Þ

Gnþ1=2
i; j#1=2;k ¼

1

"x"z"t

;
Z t nþ1

t n

Z zkþ1=2

zk#1=2

Z xiþ1=2

xi#1=2

G x; yj#1=2; z; t
$

dx dz dt; ð14Þ

Hnþ1=2
i; j;k#1=2 ¼

1

"x"y"t

;
Z t nþ1

t n

Z yjþ1=2

yj#1=2

Z xiþ1=2

xi#1=2

H x; y; zk#1=2; t
$

dx dy dt; ð15Þ

are vectors of the time- and area-averaged fluxes.We use the con-
vention here, and throughout this paper, that half-integer sub-
scripts denote the edges of the computational cells, that is xi#1/2 is
the location of the interface between the cells centered at xi#1 and
xi. Thus, the fluxes are evaluated at (and are normal to) the faces
of each grid cell (see Fig. 1). Note the half-integer superscript on
the fluxes denote a time average, rather than representing the flux
evaluated at t nþ1/2.

As has been pointed out by many previous authors, equa-
tions (11)Y(15) are exact: to this point no approximation has been
made. A numerical algorithm for MHD within the finite-volume
approach requires accurate and stable approximations for the
time- and area-averaged fluxes defined by equations (13)Y(15).
In principle, one can approximate the fluxes to any order of

ATHENA: NEW ASTROPHYSICAL MHD CODE 139No. 1, 2008

Finite Volume

Ui, j,k

U = [ρ, ρu, ρv, ρw, E]T

CRUSHER USER-EXPERIENCE TALKS

HOW DOES IT WORK? CHOLLA CIRCA 2019 (PRE-CAAR)

▸ Simulation domain is divided into sub
volumes, each MPI rank is assigned a
single sub-volume and a single GPU

▸ Typical sub-volume is 2563 cells

▸ Each cell is mapped to a single
thread on the GPU

▸ Subvolumes can be further divided if
data size is too large to fit in memory
on a single GPU

GPU 0 GPU 1

GPU 2 GPU 3

CRUSHER USER-EXPERIENCE TALKS

HOW DOES IT WORK? CHOLLA CIRCA 2019 (PRE-CAAR)

▸ Serial portions of the code execute
on the CPU

▸ Parallel portions execute on the GPU

▸ Some of the new physics modules
executed partially on the GPU, some
executed exclusively on the CPU

▸ Fundamentally, the grids “lived” on
the CPU, and were transferred to the
GPU with every time step

CPU

GPU

Output

Initialization

Interface Reconstruction

Riemann Solution

Half step update

Riemann Solution

Conserved variable update

Set initial conditions

Calculate first time step

Calculate next time step

Hydro Module

Set values of ghost cells

MPI communications

Boundary Conditions

t = tout

CRUSHER USER-EXPERIENCE TALKS

FIRST TASK: PORTABILITY

▸ Cholla was written in C++ / Cuda / MPI / OpenMP

▸ Crusher (and Frontier) have AMD GPUs, which use HIP

▸ Solution: use HIP

▸ Option one: HIPify

▸ Use AMD-provided perl script to modify all cuda source files,
changing all cuda syntax to hip syntax

▸ hipcc compiles resulting code for either AMD or NVIDIA hardware

▸ Option two: HIPifly!

CRUSHER USER-EXPERIENCE TALKS

HIPIFLY: HIP ON THE FLY

Added a single header file, gpu.hpp
#ifdef O_HIP

#define cudaDeviceSynchronize hipDeviceSynchronize

#define cudaError hipError_t

#define cudaError_t hipError_t

#define cudaErrorInsufficientDriver hipErrorInsufficientDriver

#define cudaErrorNoDevice hipErrorNoDevice

etc.

This means there is a single CUDA code base for both NVIDIA and
AMD GPUs.

CRUSHER USER-EXPERIENCE TALKS

HIPIFLY MAKEFILE

CRUSHER USER-EXPERIENCE TALKS

HIPIFLY BUILD SYSTEM
#-- make.host for Frontier at the OLCF with

#-- Compiler and flags for different build type

CC = cc

CXX = CC

GPUCXX ?= hipcc

CFLAGS_DEBUG = -g -O0

CFLAGS_OPTIMIZE = -g -O2

CXXFLAGS_DEBUG = -g -O0 -std=c++14

CXXFLAGS_OPTIMIZE = -g -Ofast -std=c++14 -Wno-unused-result

GPUFLAGS = --offload-arch=gfx90a -Wno-unused-result

HIPCONFIG = -I$(ROCM_PATH)/include

#-- Libraries

MPI_ROOT = ${CRAY_MPICH_DIR}

FFTW_ROOT = $(shell dirname $(FFTW_DIR))

GOOGLETEST_ROOT := $(if $(GOOGLETEST_ROOT),$(GOOGLETEST_ROOT),$
(OLCF_GOOGLETEST_ROOT))

#-- Use GPU-aware MPI

MPI_GPU = -DMPI_GPU See also: https://github.com/cholla-hydro/cholla/tree/main/builds

https://github.com/cholla-hydro/cholla/tree/main/builds

CRUSHER USER-EXPERIENCE TALKS

SECOND TASK: DATA MUST LIVE ON THE GPU

▸ Originally, Cholla was designed to offload hydro calculations to the
GPU every time step (largely to allow bigger grids)

▸ As GPUs speeds have increased, CPU-GPU communication speeds
have stayed roughly the same

—> Data transfer was taking up a larger portion of the time step than
hydro calculation!

▸ Solution: keep the hydro grid on the GPU, transfer boundary cells using
GPU-aware MPI, only transfer the grid back to the CPU for output

▸ Results in a ~4x speedup for hydro on Summit hardware

CRUSHER USER-EXPERIENCE TALKS

THIRD TASK: PORT THE FFT SOLVER

▸ The primary gravity solver in Cholla is FFT-based; our domain
decomposition is block based — need a block-based FFT library
to do Poisson solve

▸ Previously, did this with PFFT on the CPU (using FFTW)

▸ There was no existing parallel block-based FFT library for GPUs

▸ Solution: Write one. Trey White (HPE) wrote a block-based
Poisson solver, Paris, that uses either cuFFT (Nvidia GPUS) or
rocFFT (AMD GPUs) to perform FFTs on the GPU, and GPU-direct
MPI communication

CRUSHER USER-EXPERIENCE TALKS

PARIS

▸ Paris moves all the following from the CPU to the GPU:

▸ FFTs (now computed using cuFFT or rocFFT)

▸ Poisson solve in frequency space

▸ Buffers for MPI communication

▸ Copies and transposes for changing dimensions in the 3D
FFTs

▸ Immediately saw at least a 3x speedup when using Paris vs
PFFT

See also: https://github.com/cholla-hydro/cholla/tree/main/src/gravity/paris

https://github.com/cholla-hydro/cholla/tree/main/src/gravity/paris

CRUSHER USER-EXPERIENCE TALKS

HOW DOES IT WORK? CHOLLA CIRCA 2022

▸ Final step in the GPU-
resident data
transition:

▸ Packing boundary
buffers on the GPU
(new Cuda kernels)
and sending off-
node using GPU-
aware MPI

Initialization

Set initial conditions

Calculate first time step

Hydro Module

Set values of ghost cells

MPI communications

Boundary Conditions

CPU

GPU

Output

t = tout

Gravity Module (Paris)

Particle Module

Resident Grid
Data on GPU

Time step Loop

On Summit, boundary
data must move back
across CPU-GPU link
to transfer off-node

On Crusher/Frontier,
network-connected GPUs
transfer boundary data
off-node

See also: https://github.com/cholla-hydro/cholla/blob/main/src/grid/cuda_boundaries.cu

https://github.com/cholla-hydro/cholla/blob/main/src/grid/cuda_boundaries.cu

TRANSITION SLIDE

CRUSHER USER-EXPERIENCE TALKS

DOCUMENTATION

▸ Several old versions exist. Correct Docs at: https://
docs.amd.com/

▸ ROCm is rapidly changing and so documentation is
sometimes incomplete

▸ Documentation is improving

▸ CUDA documentation is often the best resource for
anything that isn’t documented by AMD

https://docs.amd.com/
https://docs.amd.com/

CRUSHER USER-EXPERIENCE TALKS

POINTER ATTRIBUTES

▸ When null: cudaPointerAttributes.device = -2 but
hipPointerAttribute_t.device = 0

▸ cudaPointerAttributes.type → hipPointerAttribute_t.memoryType

typedef enum hipMemoryType {
 hipMemoryTypeHost, ///< Memory is physically located on host
 hipMemoryTypeDevice, ///< Memory is physically located on device.
 hipMemoryTypeArray, ///< Array memory, physically located on device.
 hipMemoryTypeUnified ///< Not used currently
} hipMemoryType;
enum cudaMemoryType
{
 cudaMemoryTypeUnregistered = 0, // Unregistered memory.
 cudaMemoryTypeHost = 1, // Host memory.
 cudaMemoryTypeDevice = 2, // Device memory.
 cudaMemoryTypeManaged = 3, // Managed memory
}

CRUSHER USER-EXPERIENCE TALKS

SHUFFLE

▸ HIP’s __shfl_down uses the same syntax as CUDA’s
deprecated __shfl_down

▸ __shfl_down_sync doesn’t appear in HIP documentation

▸ No *_sync shuffle operations

CRUSHER USER-EXPERIENCE TALKS

ATOMICS

▸ HIP supports floating point atomics!

▸ Hardware or software floating point atomics

CRUSHER USER-EXPERIENCE TALKS

INSTALLATION

▸ Installation methods have changed and aren’t always well
documented

▸ Additional libraries (rocRAND, rocFFT, etc) don’t always install the
same version as the system ROCm unless you’re very careful with
the repos

▸ Might need to trick ROCm into thinking there’s a GPU when there
isn’t

▸ echo "gfx90a" | sudo tee --append $(hipconfig -R)/bin/target

▸ Docker containers work great. https://hub.docker.com/u/rocm

https://hub.docker.com/u/rocm

CRUSHER USER-EXPERIENCE TALKS

CLANG-TIDY

▸ Uses CUDA instead of ROCm backend

▸ Runs into compilation errors

▸ /cholla/cholla/src/particles/feedback_CIC_gpu.cu:382:32:
error: no matching function for call to 'atomicMax' [clang-
diagnostic-error]

▸ /opt/rocm-5.2.3/include/hiprand/
hiprand_kernel_nvcc.h:43:1: error: typedef redefinition
with different types ('struct hiprandStateMRG32k3a' vs
'struct curandStateMRG32k3a') [clang-diagnostic-error]

